General Construction Specification

- **Main/Load Bearing:** 152mm (nominal) Dense Concrete Core, λ = 2.00
- **Insulation:** 2x 67mm layers of EPS + exterior extra 2 5mm, λ = 0.036
- **Concrete Floor:** Cast in situ, 6mm acoustic mat, 75mm MW with ceiling below
- **Cladding:** 9mm of Render OR 102mm Brick OR other Cladding

Description

PHPP only, ICF Wall, Party Floor+EPS, Between Dwellings (Flats)

Reference

- **Certificate No:** C4TM – 001476 vs. 0
- **Issued:** Saturday 27 April 2013
- **Issued to:** Jean-Marc Bouvier
- **Nudura**
- **NUDURA Corporation**
 International Sales & Field Support
- **Tel:** Mob +44 (0) 7766 118711
- **Email:** jmb@nudura.com
- **www.nudura.com**

Notes

1. Ψ and f are only valid for the detail drawn and described above.
2. The Ψ and f quoted are considered valid for U-value(s) W/m^2K, (allowance of +/- 20%, following the present guidance from B. Anderson, BRE, correspondence dated 24/02/2012, for the UK market). The use of different claddings may affect the U-value slightly, but will have no material impact on the calculated values used here, in this case.
3. In dwellings, UK regulations stipulate that a temperature factor f that is >0.75 would avoid the risk of mould growth. For other nations, jurisdictions and climates, please consult the local building regulations that apply for avoiding mould and condensation. (For example, typical requirements may be: Netherlands: 0.65; Switzerland: 0.75; Belgium: 0.7; Germany: 0.7; Finland: 0.87. French, German and other standards often do not indicate a single number for acceptable risk, but are dependent on circumstances.)
4. Calculations have been performed in accordance with:
 - EN ISO 10211_2007 (British Standards)
 - IP 1/06 & BR497 (BRE Press)

Calculation Prepared By

Matthew Wright, MA Physics (Oxon) PGCE