Exova 2395 Speakman Dr. Mississauga Ontario Canada L5K 1B3 T: +1 (905) 822-4111 F: +1 (905) 823-1446 E: sales@exova.com W: www.exova.com

Testing. Advising. Assuring.

THERMAL RESISTANCE CALCULATIONS OF NUDURA™ INSULATED CONCRETE FORM WALL SYSTEMS USING STANDARD ASHRAE THERMAL RESISTANCE VALUES

A Report to:

NUDURA Corporation Unit 10, 27 Hooper Road, Barrie, ON CANADA L4N 9S3

Technical Service Manager

Attention:

Telephone: Fax: Email:

Proposal No.:

Report No .:

10-006-0774

Keven Rector

(705) 726 9499 (705) 726 2110

keven@nudura.com

10-06-M0083 B 3 Pages, 1 Appendix

Date:

March 10, 2010

Page 2 of 3 Report No. 10-06-M0083 B

1.0 INTRODUCTION

At the request of NUDURA Corporation, Exova was retained to re-calculate the theoretical thermal resistance value of a wall system using standard theoretical values published in the *ASHRAE Fundamentals Handbook, 2009.*

The modified calculations are based on the client's intentions to change the 2.5 inch thick EPS foam density from 1.3 lb/ft³ to 1.4 lb/ft³ on the original "NUDURATM Insulated Concrete Form Wall System".

The initial calculations and assumptions are shown in the Appendix A: "Bodycote Materials testing Canada Inc., Report No. 01-06-M0379-3 Revision 1".

The wall system was assigned the following Exova Identification No.:

Client Wall-System Configuration	Exova Identification No.
NUDURA [™] Insulated Concrete Form Wall System".	10-06-M0083 B

2.0 PROCEDURE

ASHRAE Fundamentals handbook, 2009, Chapters 23, 25 and 26 were utilized to calculate the theoretical thermal resistance value of the wall systems. It should be noted that the values calculated in this report are the apparent value only and may change significantly when used as a system.

Reference Description	Reference No.
Annex 1: Bodycote Materials testing Canada Inc., Report No. 01-06-M0379- 3 Revision 1 dated September 21, 2004 originated by Paul Chislom, P.Eng: <i>Thermal Resistance calculations of NUDURA TM Insulated Concrete Form.</i> Except inner and outer insulation thickness 65 mm instead of 63 mm and foam density 1.4 pcf (22.425 kg/m ³) instead of 1.3 pcf (21 kg/m ³); Assumptions: λ=0.035 instead of 0.036 W/m.K.	Annex 1

Page 3 of 3 Report No. 10-06-M0083 B

3.0 RESULTS

A summary of results is presented below in Table1. A detailed presentation of the values used in the total thermal resistance calculation is provided in Appendix B. In all cases, SI units are the primary units of measure.

Table 1 – Summary of Theoretical Thermal Transmission Values Exova Identification No.: 10-06-M0083 B				
Configuration	Total Thermal Resistance			
	R-value °F.ft ² .h/Btu	RSI-value m ² K/W	U-value W/m ² K	
Outdoor Film (Winter Condition)	0.17	0.029	34.482	
Siding (Hollow backed vinyl/steel)	0.61	0.107	9.345	
Outer Insulation Panel	10.55	1.86	0.537	
Concrete Core	0.58	0.102	9.804	
Inner Insulation Panel	10.55	1.86	0.537	
Gypsum Wallboard	0.45	0.080	12.5	
Indoor Film	0.68	0.120	8.33	
Total R-Value / RSI or U value	23.59	4.158	0.2405	

4.0 CONCLUSION

The specified system configurations of NUDURA[™] Insulated Concrete Form Wall Systems, as provided in this report, have theoretical thermal resistance values as shown in Table 1, calculated based on standard ASHRAE thermal resistance values.

Reported by:

hoder

Rubaiyat Khondker, P.Eng., Ext 662 Project Engineer, Building Performance Centre Product Technologies Group Approved by:

Franz Bauer, Ext. 403 Manager, Building Performance Centre Product Technologies Group

This report and service are covered under Exova Canada Inc.'s Standard Terms and Conditions of Contract which may be found on the company website www.exova.com, or by calling 1-866-263-9268. This report refers only to the particular samples, units, material, instrument, or other subject used and referred to in it, and is limited by the tests and/or analyses performed. Similar articles may not be of like quality, and other testing and/or analysis programs might be desirable and might give different results.

Appendix A Report No. 09-06-M0291-RV2

APPENDIX A

Bodycote Materials testing Canada Inc., Report No. 01-06-M0379-3 Revision 1

Thermal Resistance Calculations of NUDURA TM Insulated Concrete Form

(2 Pages)

September 21, 2004.

Mr. Keven Rector, Technical Services Manager NUDURA Corporation 80 Ellis Drive, Unit. No. 1 Barrie, Ontario L4N 8Z3

Phone (866) 468-6299 Fax (705) 726-2110 Email: <u>keven@nudura.com</u>

Dear Mr. Rector:

Re: Thermal Resistance Calculations of NUDURA[™] Insulated Concrete Form Report No. 01-06-M0379-3 Revision 1

As requested, we have performed a calculation to determine the thermal resistance (R-value) of a typical installation of a NUDURA wall system.

The calculations were performed in accordance with Chapters 23 and 25 of the 2001 ASHRAE Fundamentals Handbook. The NUDURA insulated concrete form system consists of two panels of expanded polystyrene connected together with hinging polypropylene webs at 8-in. (200 mm) on center. The 2 3/8-in. (61 mm) insulated panels have rows of dovetailed keys having an average thickness of $\frac{1}{2}$ -in. (12.5 mm) and depth of $\frac{1}{4}$ -in. (6 mm). The resulting effective thickness of each panel is 2.5-in. (63 mm). The assumed density of the panels is 1.3 pcf (21 kg/m³) with a corresponding thermal resistivity of 4 °F ft²-hr./Btu-in. (27.73 m.K/W) (The effectiveness of the concrete core is 6 7/16-in. (163 mm) and the thermal resistivity was assumed to be 0.09 °F ft²-hr./Btu-in. (0.624 m·K/W).

The webs connecting the insulating panels are high density polypropylene and are spaced every 8-in. (200 mm). These webs penetrate the concrete in the finished system. Due to the small cross-section and the thermal properties of the plastic, the thermal effect of the webs is not significant and was excluded from the calculation. Evaluation of NUDURA Insulated Concrete Forms For NUDURA Corporation

Page 2 of 2 Report No. 01-06-M0379-3 Revision 1

Component		Resistance	
Component	hr·ft ² ·°F/Btu	m ² ·K/W	
Outdoor Film (Winter condition)	0.17	0.029	
Siding (Hollow backed vinyl/steel)	0.61	0.107	
Outer Insulation Panel	9.94	1.750	
Concrete Core	0.58	0.102	
Inner Insulation Panel	9.94	1.750	
Gypsum Wallboard	0.45	0.080	
Indoor Film	0.68	0.120	
Total R-Value / RSI	22.4	3.94	

Table 1, below, summarizes the thermal calculations.

Table 1 – Thermal resistance calculations for NUDURA[™] wall system.

The total thermal resistance (R-value) of the assumed wall is 22.4 hr·ft²·°F/Btu (3.94 m²·K/W). The thermal transmittance (U-factor) is the inverse of the total R-value and is equal to 0.0447 Btu/hr·ft²·°F (0.2538 W/m²K).

The total thermal resistance values can be increased if exterior cladding materials of greater thermal resistance are used. For example $\frac{3}{4}$ " x 10" (19mm x 250mm) beveled wood siding would have a thermal resistance of 1.052 °F· ft²· hr./Btu (0.185 m²·K/W) thus increasing the overall resistance to 23.5 °F· ft²· hr./Btu (4.125 m²·K/W).

We trust that this presents the information you require.

Sincerely,

ma e War

Paul Chisholm, MA. Sc., P.Eng Project Engineer Building Performance, Material Technologies

David W. Bailey, P.Eng. Operations Manager Material Technologies

Thermal Resistance Calculations of NUDURA[™] Insulation Wall Systems for NUDURA Corporation.

Appendix C Report No. 09-06-M0291RV2